Self-striking red glass fabrication at low temperature using gold nanoparticles

Yotsakit RUANGTAWEEP1,2,* , Jakrapong KAEWKHAO1,3 and Narong SANGWARANTEER4,*

1Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand
2Science Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand
3Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand
4Applied Physics, Faculty of Science and Technology, Suan Sunandha University, Bangkok, 10300, Thailand

*Corresponding author e-mail: Yotsakitt@hotmail.com; djone@webmail.npru.ac.th

1. Introduction

It is well known that the red glass from gold nanoparticles (AuNPs) is interesting in glass industrial production because it is the most precious and popular among all red pigments [1-3]. The glass doped with gold nanoparticles is known as “gold ruby glass” or “cranberry glass”. The red coloration is caused by the optical phenomenon exhibited by gold nanoparticles is surface plasmon resonance (SPR) [4,5]. SPR is the collective oscillation of the electrons of conduction electrons that are excited by the interaction of electromagnetic wave. The SPR absorption band of this interaction is strongly dependent on the size and shape distribution of nanoparticles which indicate to the optical absorption spectra in the UV-vis region and display the desired color [6]. Its found that spherical AuNPs with size distribution is between few and about 50 nm has the maximum absorption peak locate at 520-530 nm and there are red shift with the increasing diameters of gold nanoparticles [7]. Moreover, the factors affecting controlling the size distribution is very important for the coloration in glass such as temperature and soaking time in melting process, duration and temperature of the annealing step, reducing agent types and the composition of the base glass. These factors particularly affect on the presence of characteristic elements influencing the precipitation of the metal nanoparticles [8].

In glass production, the red glass is not easy to produce because of coloration control difficulties, it need a second heat treatment known as “striking”. Nevertheless, the gold ruby glass can be developed to the suddenly striking red color without a second heat treatment, this process is called “self-striking” [9]. Recently, it has been reported the red glass preparation at high temperature for self-striking process [10,11]. However, the fuel cost for glass preparation at high melting temperature is high, so glass production at low melting temperature is alternative way for saving cost. In the present work, tin oxide (SnO2) and selenium oxide (SeO2) were selected as a reducing agent for self-striking process at low temperature. In glass matrix, the diffused Au+ can be reduced to neutral atomic state (Au0) by reducing agents and then the gold atoms agglomerate to form nanoclusters of appropriate
size and produce the desired color [12]. Therefore, the effect of SnO_2 and SeO_2 on glass coloration from AuNP in self-striking process at low melting temperature were investigated.

2. Experimental

The glass samples containing a reducing agents with different concentration were prepared in composition of SiO_2, B_2O_3, Al_2O_3, Na_2O, CaO, K_2O, Sb_2O_3, SnO_2, SeO_2 and AuNPs as shown in Table 1 and 2. All the chemical compositions were finely powder while AuNPs was solution (diameter = 16 nm). The whole of composite were mixed in a high purity alumina crucible (each batch weighs for 20 g). Then the batches were melted by placing them in an electrical furnace at 1200°C for 3 h. After complete melting, these melts were quenched in air by pouring between preheated stainless steel plates. The quenched glasses were annealed at 500°C for 3 h to reduce thermal stress, and cooled down to room temperature. Finally, all glass samples were cut and polished for further investigation.

The densities (ρ) were measured by the Archimede’s method using xylene as immersion fluid. The corresponding molar volume (V_M) was calculated using the relation, V_M = M_T/ρ, where M_T is the total molecular weight of the multi-component glass. Refractive index (RI) was measured at room temperature using a DR-M2 refractometer with a refractometer fluid n_D ≤ 1.65 and the sodium vapor lamp as the light source (539 nm). The UV-Vis-NIR Spectrophotometer (UV-3600) used to measure optical spectra of glass sample and CIE L*a*b* color coordinate calculation. The excitation and emission spectra of the samples measured by luminescence spectrometer (Cary Spectrophotometer).

3. Results and discussion

3.1 Glass samples

The glass samples with different reducing agents are illustrated in Figures 1 and 2. The undoped glass shows the purple color that was obtained from AuNPs with diameter larger than 50 nm and the color of the glass changed with the increase of reducing agent content. The glasses with SnO_2 concentrations of 0.1 to 0.4 wt% and SeO_2 concentrations of 0.01 to 0.04 wt% show purple color while red color was occurred from SnO_2 concentrations at 0.5 and SeO_2 concentrations at 0.05 wt%. It is important to emphasize that the red color glasses can be obtained immediately when the glass is taken out of the electrical furnace. The color significantly changes from the purple to red color with increasing SnO_2 and SeO_2 concentration. The results reflect that SnO_2 and SeO_2 have an effect on the coloration of the glass in which may relates with the nucleation of gold nanoparticles [11].

Table 1. Chemical compositions of glass samples with different SnO_2 concentration.

<table>
<thead>
<tr>
<th>Concentration of SnO_2</th>
<th>Glass composition (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SiO_2</td>
</tr>
<tr>
<td>0.0</td>
<td>48.92</td>
</tr>
<tr>
<td>0.1</td>
<td>48.82</td>
</tr>
<tr>
<td>0.2</td>
<td>48.72</td>
</tr>
<tr>
<td>0.3</td>
<td>48.62</td>
</tr>
<tr>
<td>0.4</td>
<td>48.52</td>
</tr>
<tr>
<td>0.5</td>
<td>48.42</td>
</tr>
</tbody>
</table>

Table 2. Chemical compositions of glass samples with different SeO_2 concentration.

<table>
<thead>
<tr>
<th>Concentration of SeO_2</th>
<th>Glass composition (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SiO_2</td>
</tr>
<tr>
<td>0.00</td>
<td>48.92</td>
</tr>
<tr>
<td>0.01</td>
<td>48.91</td>
</tr>
<tr>
<td>0.02</td>
<td>48.90</td>
</tr>
<tr>
<td>0.03</td>
<td>48.89</td>
</tr>
<tr>
<td>0.04</td>
<td>48.88</td>
</tr>
<tr>
<td>0.05</td>
<td>48.87</td>
</tr>
</tbody>
</table>
Self-striking red glass fabrication at low temperature using gold nanoparticles

J. Met. Mater. Miner. 28(2). 2018

Figure 1. The glass samples with different SnO$_2$ concentration.

Figure 2. The glass samples with different SeO$_2$ concentration.

3.2 Density, molar volume and refractive index

The obtained value of density and molar volume are shown in Figures 3 and 4. The density of glass samples with SnO$_2$ concentrations from 0.0 to 0.5 wt% are within the range of 2.5682-2.5820 g/cm3 and the molar volume values are in the range of 31.3898-31.4259 cm3/mol. While the density of glass samples with SeO$_2$ concentrations from 0.00 to 0.05 wt% are within the range of 2.5682-2.5820 g/cm3 and the molar volume values are in the range of 31.3898-31.4259 cm3/mol. It has been observed that there is no effect of SnO$_2$ and SeO$_2$ concentration on these parameters. Actually, SnO$_2$ and SeO$_2$ are heavier than SiO$_2$ and the glass density should be increased with increasing of SnO$_2$ and SeO$_2$ content and then affect to molar volume. From this result, the dependence of density and molar volume with SnO$_2$ and SeO$_2$ concentration may be come from losing ratio and also due to the volatilization of low melting point component such as Na$_2$O and K$_2$O when glass were melted at high temperature [13]. Moreover, the refractive index value of glass samples with SnO$_2$ and SeO$_2$ concentration are in the range of 1.6561-1.6568 and 1.6558-1.6565, respectively as shown in Fig 5 and 6. It has been found that there is no effect of SnO$_2$ and SeO$_2$ concentration on such parameters. Theoretically, the refractive index is a function of density and these results maintain this trend. According to classical dielectric theory, the refractive index depends on density and on polarizability of the atom in a given material [14].
Figure 6. The refractive index of glass samples with different SeO$_2$ concentration.

3.3 Absorption spectra and CIE L*a*b* system

The absorption spectra of glass samples are illustrated in Figures 7 and 8. The optical absorption spectra were recorded in the range 200-1100 nm at room temperature. It has been found that the absorption peak of undoped glass has predominant peak around 555-565 nm produces purple color. The glass samples with SnO$_2$ concentrations from 0.0 to 0.4 wt% are observed in the absorption spectra with peaks around 540-560 nm and shown purple color. The absorption broad band around 530 nm is obtained from 0.5 wt% concentrations of SnO$_2$ and display red color. The absorption spectra of glass samples doped with SeO$_2$ similar to SnO$_2$ result. Within the concentration of SeO$_2$ from 0.00 to 0.04 wt%, a predominant broad band locate around 550-560 nm and shown purple color. The glass sample with SeO$_2$ concentration at 0.05 wt% shows the absorption broad bands around 530 nm and produce red color. The result can be explained by the acceleration of the kinetics of the formation of AuNPs by using SnO$_2$ and SeO$_2$ as catalyst [8].

\[
\begin{align*}
\text{Sn}^{4+} + 2\text{O}^{2-} & \rightarrow \text{Sn}^{2+} + \text{O}_2 \quad (1) \\
\text{Sn}^{2+} + 2\text{Au}^+ & \rightarrow 2\text{Au}^0 + \text{Sn}^{4+} \quad (2)
\end{align*}
\]

It implies that the Au$^+$ ions can be reduced to Au0 atom by the addition of SnO$_2$ and SeO$_2$. After that, the gold atoms agglomerate to condensation nuclei for the nanoparticles with appropriate size in glass matrix. However, the absorption peak position depends on the size and shape distributions of AuNPs. We compared the absorption spectra with literatures, and found that the size distribution of spherical AuNP which is in range of a few and about 50 nm, exhibits the absorption peak at 520-530 nm and display a red color in glass [15,16]. This result is corresponding with published literatures.

Figure 7. The absorption spectra of glass samples with different SnO$_2$ concentration.

Figure 8. The absorption spectra of glass samples with different SeO$_2$ concentration.
Moreover, the absorption spectra were consistent the color coordinate in CIEL*a*b* system, as shown in Figures 9 and 10. Therefore, glass samples with SnO$_2$ at 0.5 wt% and SeO$_2$ at 0.5 wt% are the optimize concentration for a preparation of red glass at low temperature by self-striking process.

Figure 9. The CIE L*a*b* color scale of glass samples with different SnO$_2$ concentration.

Figure 10. The CIE L*a*b* color scale of glass samples with different SeO$_2$ concentration.

4. Conclusions

In this work, SnO$_2$ and SeO$_2$ were selected as a reducing agent in self-striking process at low temperature for red glass production. The concentrations of SnO$_2$ in present glasses were varied from 0.0 to 0.5 wt%, while SeO$_2$ in range 0.00 to 0.05 wt%. The results show that the density and the molar volume are not affected with increasing of SnO$_2$ and SeO$_2$ concentrations. The absorption peak locates around 530 nm and show red color with SnO$_2$ at 0.5 wt% and SeO$_2$ at 0.05 wt%. The color coordinate in CIEL*a*b* system confirmed color of glasses.

5. Acknowledgements

This work had been supported by the office of the National Research Council of Thailand (NRCT). The thanks are also due to the Research and Development Institute, Nakhon Pathom Rajabhat University (NPRU), Suan Sunandha Rajabhat University (SSRU) and Center of Excellence in Glass Technology and Materials Science (CEGM) for the facilities support.

References

